
IJSRSET196318 | Received : 20 April 2019 | Accepted : 06 May 2019 | March-April -2019 [6 (3) : 70-75]

© 2019 IJSRSET | Volume 6 | Issue 3 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

Themed Section : Engineering and Technology

DOI : https://doi.org/10.32628/IJSRSET196318

70

RTL Design, Verification and Synthesis of Secure Hash Algorithm
to implement on an ASIC Processor

Akhilesh S Narayan1, Ashish J2, Noor Afreen3, Lithesh V S4, Sandeep R5

1-4Department of ECE, VVCE, Mysore, Karnataka, India
5Associate Professor, Department of ECE, VVCE, Mysore, Karnataka, India

ABSTRACT

In this project we are comparing different architectures and adding the features that increases the efficiency of

our architecture. Few of them are including multiplexers in the message digester, using different adder

architectures in the required places, reducing the critical path by breaking the longest path and making them to

operate parallelly. Use of multiplexers reduces the number of registers required in the message expander. It simply

transfers the output of expander to compressor block in every clock cycle. Whenever the number of cycle is

greater than 16, the multiplexer switches the select line so that the computed message digest to send as output to

the compressor. Using of a carry save adder and adder array takes lesser time to perform addition than a pair of

adders array. Finally we all know that reducing the critical path reduces the overall operation time and hence

increases the efficiency. Considering all these factors in the design we are designing the microarchitecture for

SHA-256 algorithm and obtain the RTL code for that architecture. We have also verified the design by designing

a test-bench, and finally synthesized the design.

Keywords: SHA 256, Bit Coin, Block chain, Microarchitecture, RTL

I. INTRODUCTION

SHA-256 is a member of the SHA-2 cryptographical

hash functions designed by the United States

intelligence agency. SHA stands for Secure Hash

Algorithm. Cryptographic hash functions are

mathematical operations that run on digital

information; by examination of the computed hash

(the output from execution of the algorithm) to a

better-known and expected hash value, a person can

determine the data’s integrity. A unidirectional hash

will be generated from any piece of information, but

the data cannot be generated from the hash.

SHA-256 is employed in many completely different

components of the Bit coin network:

a) Mining uses SHA-256 as the proof of work (A proof

of work is a piece of data which is difficult, costly and

time-consuming to produce but easy for others to

verify and which satisfies certain requirements)

algorithm.

b) SHA-256 is used in the creation of bit coin address

to improve security and privacy.

BITCOIN AND BITCOIN MINING

Consumers tend to trust printed currencies, at least in

the United States. That’s because the U.S. dollar is

backed by a central bank called the Federal Reserve. In

addition to a host of other responsibilities, the Federal

Reserve regulates the production of new money and

prosecutes the use of counterfeit currency even digital

payments using the U.S. dollar are backed by a central

https://doi.org/10.32628/IJSRSET196318

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Akhilesh S Narayan et al Int J Sci Res Sci Eng Technol. May-June-2019; 6 (3) : 70-75

 71

authority. When you make an online purchase using

your debit or credit card, for example, that transaction

is processed by a payment processing company such as

MasterCard or Visa. In addition to recording your

transaction history, those companies verify that

transactions are not fraudulent, which is one reason

your debit or credit card may be suspended while

traveling.

Bitcoin, on the other hand, is not regulated by a central

authority. Instead, Bitcoin is backed by millions of

computers across the world called miners. This

network of computers performs the same function as

the Federal Reserve, Visa, and MasterCard, but with a

few key differences. Like the Federal Reserve, Visa,

and MasterCard, Bitcoin miners record transactions

and check their accuracy. Unlike those central

authorities, however, Bitcoin miners are spread out

across the world and record transaction data in a public

list that can be accessed by anyone, even you. When

someone makes a purchase or sale using Bitcoin, we

call that a transaction. Transactions made in-store and

online are documented by banks, point-of-sale

systems, and physical receipts. Bitcoin miners achieve

the same effect without these institutions by their

back.

II. LITERATURE SURVEY

Of these designs, it was found that the scheme

illustrated in Figure 1 gave the shortest critical path

and, therefore, could be operated at the highest

frequency. In Figure 2, architecture for the message

expander was presented which uses CSAs to reduce the

number of required adders. Since the critical path in

this design (see Figure 2) is shorter than that of the core,

it is the core that determines how fast the overall hash

algorithm can be executed. The authors also present a

design employing delay balancing to further shorten

the critical path in the message expander. However,

this scheme is unsuitable for unrolling.

III. IMPLEMENTED METHODOLOGY

Figure 3 : Top level architecture

The top-level design of SHA-256 is as shown within

the figure. It consists of various varieties of memory

banks, adders, barrel shifters and completely different

bit-wise logical operators. All the operations that's

performed here are 32-bit operations and thus 32-bit

operators area unit used, to start with, the information

is split into chunks of 448 bits for purpose of processing.

The message bit is padded with binary '1' and the end

of message. The length of the message is padded at the

end of 512 bits. i.e. the last 3 bytes of padded message

should represent the length of the message. Padding is

completed as given below: Let ‘M’ be the message to be

hashed. The message ‘M’ is cushioned in order that its

length (in bits) is adequate 448 modulo 512, i.e. the

cushioned message is 64 bits but a multiple of 512. The

cushioning consists of information followed by a

binary '1' followed by enough zeros to pad the message

to the specified length. All the padding operations are

done in the I/O block of the ASIC. Once the data is

ready for the operation they are loaded on the shift

Figure 1: Basic SHA - 2 Message Expander [1]

Figure 2: Dadda et al.'s SHA 2 Core [1]

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Akhilesh S Narayan et al Int J Sci Res Sci Eng Technol. May-June-2019; 6 (3) : 70-75

 72

registers as 32 bit blocks. Using this Message data,

extended message block (W) is calculated in the

message schedule.

Each extended message block is 32bits. Initially, W0 to

W15 is loaded with the message blocks i.e. for i=0 to 15:

Wi = Mi.

The remaining W16 to W63 is calculated using previous

W values as shown below.

For i = 16 to 63:

Wi = σ1 (Wi-2) + Wi-7 + σ0 (Wi-15) + Wi-16

Once all the values of Wi is calculated in message

schedule is calculated it is stored in the register bank as

shown in the block diagram.

To calculate the hash for given data, some initial hash

value is computed by taking the initial hash value (H0

to H7) and modifying it using extended message blocks.

i) The initial hash value is obtained by taking the

square root of first 8 prime numbers.

These values are stored permanently in a register. A

copy of these initial values are copied to a temporary

variable a, b, c…h and a lot of mixing operations takes

place iteratively in the compression function. The

operation that takes place in compression function is as

shown in Fig 3.

a) Ma (x, y, z) = [(x & y) ^ (x & z) ^ (y & z)]

b) ∑0 (x) = [(x >> 2) ^ (x >>13) ^ (x >> 22)]

c) ∑1 (x) = [(x >> 6) ^ (x >> 11) ^ (x >> 25)]

d) Ch(x, y, z) = [(x & y) ^ ((~x) & z)]

e) σ0 (x) = [S7⊕ S18 ⊕ R7]

f) σ1 (x) = [S17⊕ S19 ⊕ R10]

This process iterates for 64 times, for every iteration

the A, B, C….D value gets updated. After 64 iterations,

these values are added with the initial hash values to

obtain a new hash value. The process of updating the

hash value is as shown in Figure 4. The new hash value

is taken as initial hash value and the process is repeated

for next chunk of 512 bit message data. This process

repeats until every 512 bit message blocks are used, and

the final hash is the hash value which is updated in the

register.

IV. COMPUTATIONAL ANALYSIS AND

RESULTS

Within one iteration the order of additives in SHA2

doesn't have an effect on the results, there square

measure many doable DFGs. as an example, ((a + b) +

c) and ((b + c) + a) square measure equivalent in

arithmetic however can have completely different

DFGs. As a place to begin, the DFG having the

minimum iteration sure should be chosen,

transformations square measure then performed to

seek out the design that achieves this sure. In SHA2

mechanical device, there square measure solely seven

adders, finding a DFG having the minimum iteration

sure isn't troublesome as long as we tend to perceive a

way to calculate the iteration sure.

The Verilog implementation was done for the

architecture is shown in the figure 5. Different blocks

of the compressor the compressors are created as

Figure 4 : Compression Function [8]

Figure 5 : Compressor Architecture [4]

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Akhilesh S Narayan et al Int J Sci Res Sci Eng Technol. May-June-2019; 6 (3) : 70-75

 73

different modules and are instantiated to form a

compressor module.

Few of the modules used in the compressor block are

shown below.

Figure 6 (b) represents MAJ module, it performs and -

xor operations with 3 operands. One thing we need to

observe is that the operands are 32 bits. Similarly

Figure 6 (a) represents the 3 operand operation which

is described as shown in it. Figure 6 (c) contains an RTL

code of 2 operand operation used in the compressor.

Similarly all the other blocks shown in the figure 5 is

coded as a different module and later instantiated to

form a single module. The part of the main compressor

module is as shown in figure 7.

Figure 7: Compressor Module

Coming to the expander part, we have used a

multiplexer in order to send the message digest into the

compressor block. The 512 bit message is broken into

16 32bit blocks. The remaining message blocks are

computed using the previous message blocks. Here the

role of the multiplexer is to send the message and the

computed message to compressor at the proper time.

Figure 8 is the main expander block where we have

used multiplexer for routing the message.

Finally the values that has to be stored permanently are

stored using case statements. Where each value is

associated with a memory. So the values can be

accessed by accessing the memory. Figure 9 represents

the RTL for storing the constant values.

Once the code is being written we checked for errors

and simulated the waveforms. Once the code is

logically verified we check for synthesis. Basically our

target was ASIC. We used RC compiler to compile and

synthesis the code. One of the results of the synthesis

is as show below in figure 10.

Figure 6 : Different modules used in compressor

Figure 8 : Expander module and use of multiplexer

Figure 9 : Initialization of Constant Values

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Akhilesh S Narayan et al Int J Sci Res Sci Eng Technol. May-June-2019; 6 (3) : 70-75

 74

Figure 10 : Truncated synthesis result

V. APPLICATIONS, ADVANTAGES &

DISADVANTAGES

It is profusely used in Bit coin IC mining - transactions.

Extended applications include implementation in

cryptographic protocols such as TLS, SSL, and PGP and

so on.

Several govt applications such as protection of

classified documents, pprivacy of data transfers, secure

electronic transactions (Fund transfers) and digital

signature algorithms (Biometric).

SHA-2 may be a cryptologic hash operate, and is often

a building block for alternative cryptologic constructs.

In satisfying the wants of cryptologic hash, it is a

unidirectional operate that's settled, quick to figure,

proof against pre-image and second-pre image attacks,

and is collision resistant. It’s a proof-of-work operate

for block chain-based currencies. It seems to be very

little quite inelegantly mashing of a bunch of unrelated

hash functions along within the naïve hope that which

will somehow build it ASIC-resistant and safer. Faster

to figure when put next to MD5, SHA-1 algorithms

(Lesser machine cycles – sixty four cycles) and is

additionally proof against pre-image and second pre-

image attacks.

SHA-256 can want considerably further processor time

there is an additional 514.5 seconds for SHA-256 to end

hashing compared to MD5, or 4.18 further seconds per

computer hardware unit. The general measure differed

for each environment; the common 30 minutes further

processor time required per computer hardware unit

remained consistent. there is an incredible discrepancy

between amount checksums and conjointly the

number of it slow spent in total execution of the

method, roughly on the scale of 9 “idle” seconds to at

least one processor second. The extended distinction in

total runtimes for SHA-256 and MD5 (1,674 seconds

on average) is because of factors external to the

algorithms. There’s to boot a considerable time –

memory trade-off. Finally, it's overpriced to

implement on ASIC (approx. four integer INR).

VI. CONCLUSION

To conclude, the SHA-256 hashing algorithmic rule is

an integral a part of the Bit coin protocol. Its seen

implementation in varied aspects of the technology

such as: bit coin mining, merkle trees and therefore the

creation of Bit coin addresses. Throughput

comparisons amongst FPGA-based SHA-2 styles have

recently been drawn reportable knowledge turnout for

SHA-256 was 693 Mbps and 1034 Mbps for SHA-512,

each targeting Virtex-E FPGAs while implementing

the algorithm on an ASIC using our architecture and

libraries, we obtained a throughput of approximately

1.2 Gbps when compiled at a frequency of 150 MHz

and 0.8V supply. Also, there was a significant decrease

in power consumption from 9 mW to 3 mW along with

the reduction in the number of cells and cell area on

the whole. Considering all the evidences declared, we

will note that there's a substantial advantage of

victimization VLSI hardware implementations to

accelerate cryptographical algorithms and protocols.

VII. REFERENCES

[1]. Luigi Dadda, Marco Macchetti, Jeff Owen “An

ASIC Design for high speed implementation of

Hash function SHA-256”, SIGDA –

Compendium, March 2004

[2]. Rajeev Sobti, G.Geetha “Cryptographic Hash

functions: A review”, IJCSI International Journal

of Computer Science Issues, Vol. 9, Issue 2, No.

2, March 2012

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Akhilesh S Narayan et al Int J Sci Res Sci Eng Technol. May-June-2019; 6 (3) : 70-75

 75

[3]. Robert P. McEvoy, Francis M. Crowe, Colin C.

Murphy and William P. Marnane “Optimization

of the SHA-2 Family of Hash Functions on

FPGAs”, IEEE Computer Society Annual

Symposium on VLSI, Germany, March 2006

[4]. James Docherty, Albert Koelmans “Hardware

Implementation of SHA-1 and SHA-2 Hash

Functions”, Newcastle University, 2011

[5]. Dr. Harris E Michael, George Athanasiou,

George Theodoridis “Area throughput trade –

offs for SHA-1 and SHA-256 hash functions

pipelined designs”, Journal of Circuits, Systems

and Computers, July 2015

[6]. Digital Signature Standard. National Institute of

Standards and Technology. Federal Information

Processing Standards Publication 186-2.

http://csrc.nist.gov/publications/fips/fips186-

2/fips186-2-change1.pdf.

[7]. Secure Hash Standard. National Institute of

Standards and Technology. Federal Information

Processing Standards Publication 180-2,

http://csrc.nist.gov/publications/fips/fips180-2/fips180-

2.pdf

[8]. https://en.wikipedia.org/wiki/SHA-2

[9]. L. Dadda, M. Macchetti and J. Owen: An ASIC

design for a high speed implementation of the

hash function SHA-256 (384, 512). ACM Great

Lakes Symposium on VLSI. 2004.

[10]. L. Dadda, M. Macchetti and J. Owen: The design

of a high speed ASIC unit for the hash func-tion

SHA-256 (384, 512). DATE 2004. IEEE

Computer Society. 2004.

[11]. M. Macchetti and L. Dadda: Quasi-pipelined

hash circuits. Proceedings of the 17th IEEE

Symposium on Computer Arithmetic. 2005.

[12]. R. P. McEvoy, F. M. Crowe, C. C. Murphy and

W. P. Marnane,: Optimisation of the SHA-2

Family of Hah Functions on FPGAs. Proceedings

of the 2006 Emerging VLAI Technologies and

Architectures (ISVLSI’06). 2006.

[13]. H. Michail, A.P. Kakarountas, O. Koufopavlou

and C.E. Goutis: A Low-Power and High-

Throughput Implementation of the SHA-1 Hash

Function. IEEE International Symposium on

Circuits and Systems, 2005.

[14]. F. Crowe, A. Daly and W. Marnane: Single-chip

FPGA implementation of a cryptographic co-

processor. In Proceedings of the International

Conference on Field Programmable Technology

(FPT 2004). 2004

[15]. R. Lien, T. Grembowski and K. Gaj: A 1 Gbit/s

partially unrolled architecture of hash functions

SHA-1 and SHA-512. CT-RSA 2004. Vol. 2964 of

LNCS. Springer. 2004.

[16]. Y. Ming-yan, Z. Tong, W. Jin-xiang and Y. Yi-

zheng: An Efficient ASIC Implementation of

SHA-1 Engine for TPM. The 2004 IEEE Asia-

Pacific Conference on Circuits and Systems.

December 6–9. 2004.

[17]. G. T S and T S B Sudarshan: ASIC

Implementation of a Unified Hardware

Architecture for Non-Key Based Cryptographic

Hash Primitives. Proceedings of the

International Conference on Information

Technology: Coding and Computing (ITCC’05).

2005.

[18]. A. Satoh and T. Inoue: ASIC-Hardware-Focused

Comparison for Hash Functions MD5, RIPEMD-

160, and SHS. Proceedings of the International

Conference on Information Technology: Coding

and Computing (ITCC’05). 2005.

[19]. Helion IP Core Products. Helion Technology.

http://heliontech.com/core.htm.

Cite this article as : Akhilesh S Narayan, Ashish J, Noor

Afreen, Lithesh V S, Sandeep R, "RTL Design,

Verification and Synthesis of Secure Hash Algorithm

to implement on an ASIC Processor", International

Journal of Scientific Research in Science, Engineering

and Technology (IJSRSET), Online ISSN : 2394-4099,

Print ISSN : 2395-1990, Volume 6 Issue 3, pp. 70-75,

May-June 2019. Available at doi :

https://doi.org/10.32628/IJSRSET196318

Journal URL : http://ijsrset.com/IJSRSET196318

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
https://en.wikipedia.org/wiki/SHA-2
https://doi.org/10.32628/IJSRSET196318
http://ijsrset.com/IJSRSET196318

